Aller au menu Aller au contenu
Job offers
Job offers
Job offers
< >

> About LEPMI > Job offers

LEPMI Jobs

 

Researcher



 

Research support personnel



 

Theses

  • Published on 12/10/2018
    - Environnement :Le stage se déroule dans le cadre du projet IDEX « Circular » qui regroupe différents organismes de recherche autour de la thématique de l’économie circulaire. Les encadrants sont également en lien étroit avec une startup qui développe des BMS de hautes performances : Enerstone. Le stagiaire aura l’occasion de profiter de l’expertise de cette société.
  • Published on 13/07/2018
    CONTEXT and STATE-OF-THE-ART - Ceramic high-temperature fuel cell and electrolyser are efficient energy-conversion systems for electrical power generation and hydrogen production. This type of electrochemical device is constituted by a stack of elementary Solid Oxide Cells (SOCs), each one being composed of a dense electrolyte sandwiched between two porous electrodes. The industrial deployment of SOCs is still hindered by key issues related to durability and costs. For instance, the instability of the oxygen electrode made of Lanthanum Strontium Cobalt Ferrite (LSCF) is recognized as one of the prevalent mechanisms involved in the loss of SOCs performance, especially when operated in electrolysis mode [1]. The processes of the material deterioration being thermally activated, many studies have been recently undertaken to reduce the operating temperature with new oxygen electrode materials in order to improve the performances as well as to mitigate the degradation. However, the performances of SOCs are not only due to intrinsic properties of materials but they are also strongly related to the association of functionally structured electrodes and the properties of the electrode/electrolyte interface. In this frame, architecturally designed La0.6Sr0.4Co0.2Fe0.8O3- (LSCF) and La2-xPrxNiO4+δ (x=1, LPNO) oxygen electrodes layered by Electrostatic Spray Deposition (ESD) and SP on Ce0.9Gd0.1O2-δ (CGO) electrolyte are selected as innovative solutions for the next generation of SOCs. To date, optimum polarization resistances have been reported [2-4] thanks to the presence of a nanostructured ESD active porous functional layer facilitating the oxygen surface exchange and ions diffusion, fundamental in the oxygen electrode design.
  • Published on 12/10/2017
    Renewable energy sources require large-scale, stationary energy storage systems to balance outfluctuations in energy generation (6.5 GW from solar panel in France at 2015 and 8.5 GW from windturbine in 2014, expected to exceed 20 GW at 2020) as well as to reduce the use of the fossil fuelsand consequently to reduce the pollutant production as well as the CO2 emissions. VSL ( Vanadium-Liquid-Solid) project will advance the development of one of the most promising storage systems i.e.redox-flow batteries which concerns the conversion of “renewable” electrical energies in to chemicalform and the reverse process i.e. the recovery of the stored electrical energy.More precisely, the energy must be stored via a redox reaction into ‘electroactive chemicalcompounds’ present in solutions; these solutions are stored into high volume storage tanks (ST) andflow across electrochemical reactor (ER), the resulting system was named redox flow battery.
  • Published on 19/07/2017
    Dans le contexte général du développement durable et des considérations écologiques, Aperam, un producteur d’acier de réputation mondiale (sites de production en France, Belgique et Brésil) s’est engagé à ne plus enfouir de déchets d’ici 2020. La production d’acier implique l’utilisation d’acides pour les différents traitements de surfaces des alliages. Ceci induit la formation de boues et la dégradation des bains de décapage, qui sont simplement neutralisés et enfouis par manque de procédés de recyclage efficaces et économiquement viables. L’obstacle le plus fréquent au retraitement de ces boues est leur contenu en F et S qui proviennent des acides employés.
  • Published on 19/07/2017
    In the general context of sustainable development and ecological concerns, Aperam, a stainless steel producer of world-wide reputation (plants in France, Belgium and Brazil), committed itself not to landfill waste anymore by the end of 2020. The production of stainless steels currently implies the use of acids in the several surface treatments undergone by the alloy. This induces the formation of sludges and degraded baths which are simply neutralized and landfilled because of the lack of efficient and cost effective way to revalorize them. It is often seen that the main obstacles to the treatment of these sludges are their content of F and S coming from the acids and other surface treatment baths used.
  • Published on 19/07/2017
    Every year, more than 200 000 orthopaedic prostheses (knee, hip) and a huge (but unknown) number of dental implants are implanted in France. For an optimal efficiency, these implants have to be well integrated in bone. To favour osseointegration, dental implants rely on modification of their surface morphology, while a Calcium-Phosphate coating is often required on the surface of orthopaedic implants.
  • Published on 06/06/2017
    Ce sujet de thèse bénéficie d’un financement obtenu par le Labex CEMAM (Centre D’Excellence des Matériaux architecturés et Multifonctionnels).

 

Post-Doctoral

  • Published on 09/03/2017
    We are looking for a talented postdoctoral fellow (PDF) willing to contribute with new skills and ideas in the field of the synthesis and development of a new membranes and electrodes for Proton Exchange Membrane Fuel Cells (PEMFC).
  • Published on 23/11/2016
    The Lepmi laboratory (Laboratoire d’Electrochimie et de Physico-chimie des Matériaux et desInterfaces UMR 5279) is recruiting a PhD fellow for 12 months within the frame of “BatRE ARES”project funded by ERA-MIN network. The recruited person will work at the University Campus ofSaint Martin d’ Hères(Grenoble).Starting date : January – March 2017

Written by Olivier Szydlo

Date of update February 2, 2016

Contacts

Director :
Jean-Claude Leprêtre
04 76 82 66 98
Administrative and financial manager :
Théodolinda Vivenzio
04 76 82 65 67
Fax : 04 76 82 67 77
Univ. Grenoble Alpes