Aller au menu Aller au contenu
Actualités
Actualités
Actualités

> LE LEPMI > Actualités

Nouvelle publication

Publié le 15 novembre 2018
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
15 novembre 2018

Nouvelle publication co-signée par Huu-Dat Nguyen et Cristina Iojoiu " Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries" Energy Environ. Sci., 2018,11, 3298-3309, DOI: 10.1039/C8EE02093K

 Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries
Huu-Dat Nguyen,  Guk-Tae Kim,  Junli Shi, Elie PaillardPatrick Judeinstein, Sandrine Lyonnard, Dominic Bresser* et Cristina Iojoiu* 
Energy Environ. Sci., 2018,11, 3298-3309, DOI: 10.1039/C8EE02093K
Single-ion conducting polymer electrolytes address both challenges by replacing the flammable and unstable liquid electrolytes and enabling dendrite-free cycling of high-energy lithium metal anodes. To date, however, their commercial use has been hindered by insufficient ionic conductivities at ambient temperature (commonly not exceeding 10−6 S cm−1) and the limited electrochemical stability towards oxidation, in particular when incorporating ether-type building blocks, limiting their application to rather low-voltage cathode materials like LiFePO4. Here, we introduce ether-free, nanostructured multi-block copolymers as single-ion conducting electrolytes, providing high thermal stability and self-extinguishing properties and, if plasticized with ethylene carbonate, ionic conductivities exceeding 10−3 S cm−1 above 30 °C, i.e., approaching that of state-of-the-art liquid electrolytes. Moreover, these single-ion conducting ionomers present highly reversible lithium cycling for more than 1000 h and, as a result of their excellent electrochemical stability, highly stable cycling of Li[Ni1/3Co1/3Mn1/3]O2 cathodes. To the best of our knowledge, this is the first polymer electrolyte that presents such remarkable ionic conductivity and outstanding electrochemical stability towards both reduction and oxidation. Remarkably, the realization of well-defined continuous ionic domains appears to be the key to efficient charge transport through the electrolyte bulk and across the electrode/electrolyte interface, highlighting the importance of the self-assembling nanostructure.


A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 15 novembre 2018

Université Grenoble Alpes