Aller au menu Aller au contenu
EQUIPE MIEL
Électrochimie et physicochimie des matériaux et des interfaces
EQUIPE MIEL
EQUIPE MIEL

> Equipes > MIEL > Faits Marquants MIEL

Perfluorosulfonyl Imide versus Perfluorosulfonic Acid Ionomers in Proton?Exchange Membrane Fuel Cells at Low Relative Humidity

ChemSusChem

Mis à jour le 3 octobre 2020
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Huu?Dat Nguyen, Regis Porhiel, Jean?Blaise Brubach, Emilie Planes, Priscillia Soudant, Patrick Judeinstein, Lionel Porcar, Sandrine Lyonnard, Cristina Iojoiu

Designing highly conductive ionomers at high temperature and low relative humidity is challenging in proton‐exchange membrane fuel cells. Perfluorosulfonyl imide ionomers were believed to achieve this goal, owing to their exceptional acidity and excellent thermal stability. Perfluorosulfonyl imide ionomers are less conductive than the analogous perfluorosulfonic acids despite similar membrane microstructure. In this study, the distinct behavior is rationalized by in situ synchrotron infrared spectroscopy during hydration. The protonation mechanism, formation of the protonic moiety and water clustering are totally different for the two different families of membranes. The ionization mediated by trans‐to‐cis conformational transition of the perfluorosulfonyl imide ionomer is not accompanied by the formation of hydronium ions. In contrast, Zundel‐ion entities were identified as the elementary protonic complex, which is stable over the hydration range. The H‐bond network of surrounding water molecules appears to be less connected and the protons remain highly localized and unavailable for efficient structural transport. The delocalization of protons and their mitigated interaction with the surrounding medium are prominent effects that negatively impact conductivity.
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 3 octobre 2020

  • Carnot Energies du futur
  • CEMAM
Université Grenoble Alpes