Aller au menu Aller au contenu
EQUIPE MIEL
EQUIPE MIEL
EQUIPE MIEL

> Equipes > MIEL > Faits Marquants MIEL

Tailoring the Proton Conductivity and Microstructure of Block Copolymers by Countercation-Selective Membrane Fabrication

J. Phys. Chem. C

Mis à jour le 3 octobre 2020
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Huu-Dat Nguyen, Thi Khanh Ly Nguyen, Emilie Planes, Jacques Jestin, Lionel Porcar, Sandrine Lyonnard, Cristina Iojoiu

Capture d’écran 2020-10-03 221356.jpg

Capture d’écran 2020-10-03 221356.jpg

Here we report a simple but effective method to control the membrane morphology and transport properties of aromatic multiblock copolymers bearing perfluorosulfonic functions, via casting with different countercations. Five monovalent cations with different sizes, polarities, and hydrophobicities, i.e., H+, Li+, K+, Cs+, and TEA+, and one double-valence cation, i.e., Ca2+, were selected for preparing block copolymer membranes. We show that the countercation has a strong impact on the superstructure long-range order by acting as either a block separator or a block compatibilizer, therefore tuning the thermodynamics of the self-assembly process. Hence, by selecting the cations, highly ordered or completely disordered phase-separated block morphologies can be created. The effect of the countercation nature on the morphology is strongly reflected in the proton conductivity of acidified membranes. At 25 °C and 10% relative humidity, the acidified TEA+-cast membranes are ∼22 times less conductive than the acidified Cs+-cast ones. By combining microscopy and neutron scattering techniques, we reveal the direct correlation between enhanced functional properties and quality of membrane microstructure directed by the nature of cations with beneficial characteristics. Our findings highlight the role and importance of cation selection to tailor the functional properties of multiblock ionomers applicable as solid electrolytes for energy conversion devices.
https://doi.org/10.1021/acs.jpcc.0c04682
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 3 octobre 2020

Université Grenoble Alpes