La pile à combustible directe à borohydrures (DBFC en anglais), qui est une sous-catégorie des piles à combustible alcalines, bénéficie des avantages de son combustible, le borohydrure de sodium (NaBH4), qui confère à ce système des caractéristiques thermodynamiques et énergétiques très intéressantes. Cependant, la réaction d’électrooxydation de NaBH4 (BOR en anglais) est très complexe et reste à ce jour encore peu étudiée et mal comprise sur la majorité des électrocatalyseurs (la plupart étant sous forme de nanoparticules métalliques supportées sur des noirs de carbone). De plus, de récentes études ont montré l’agressivité du milieu alcalin sur la durabilité des électrocatalyseurs conventionnels, révélant une grande perte de surface catalytique active, due principalement à un détachement des nanoparticules du support carboné. Dans ce contexte, ces travaux de thèse se sont orientés vers trois axes d’étude : (i) l’étude de la BOR sur des électrocatalyseurs à base de palladium dans des conditions proches des conditions réelles de fonctionnement de la DBFC ; (ii) l’étude de l’impact de la structure de l’anode sur les performances globales de la DBFC, et (iii) l’étude du mécanisme de dégradation d’électrocatalyseurs à base de métaux nobles dans un environnement alcalin. Les expérimentations ont été réalisées en étroite collaboration avec le U.S. Naval Research Laboratory (Washington, USA). Les résultats obtenus ont montré qu’une grande concentration en NaBH4 entraine un ralentissement de la cinétique de la réaction, due en partie à un fort empoisonnement de la surface catalytique. Par ailleurs, des marqueurs d’activité pour la BOR ont été proposés. Ensuite, l’utilisation d’électrodes à gradient de catalyseurs s’est avérée être une solution prometteuse pour mieux valoriser l’hydrogène produit via des réactions secondaires à la BOR. Enfin, l’utilisation de la spectroscopie infrarouge à transformée de Fourier couplée à de la microscopie électronique en transmission à localisation identique a permis de détecter la formation de carbonates au cours d’un test de vieillissement accéléré d’électrocatalyseurs à base de métaux nobles en milieu alcalin. Ce mécanisme explique, en partie, le détachement des nanoparticules observé au cours du test.