Metal-air batteries are addressed through our activities on oxygen reduction and oxygen evolution catalysts and electrodes (e.g. stainless-steel electrodes for efficient oxygen evolution reaction [1-3] or evolution reaction [4]), but also through a priviledged collaboration with Easyl. In that collaboration, we develop architectured Zn-based electrodes for long-term charge/discharge cycling and high-capacity operation [5-6].
Contact: Laetitia Dubau et Marian Chatenet
Contact: Laetitia Dubau et Marian Chatenet
[1] F. Moureaux, G. Toussaint, P. Stevens, M. Chatenet, Development of an oxygen-evolution electrode from 316L stainless steel: Application to the OER in aqueous lithium-air batteries. J. Power sources 229 (2013) 123-132; http://dx.doi.org/10.1016/j.jpowsour.2012.11.133
[2] F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Timely-activated 316L stainless steel: A low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments. Appl. Catal. B: Environmental 258 (2019); https://doi.org/10.1016/j.apcatb.2019.117963
[3] H. Schäfer, M. Chatenet, Steel, the Resurrection of a Forgotten Water-Splitting Catalyst. ACS Energy Lett. 3 (2018) 574-591; http://dx.doi.org/10.1021/acsenergylett.8b00024
[4] L. Ring, B. Pollet, M. Chatenet, S. Abbou, K. Küpper, M. Schmidt, M. Huck, A. Gries, M. Steinhart, H. Schäfer, From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes. Angewandte Chemie, Int. Ed. 59 (2019) 2-12; http://dx.doi.org/10.1002/anie.201908649
[5] V. Caldeira, L. Jouffret, J. Thiel, F. R. Lacoste, S. Obbade, L. Dubau, M. Chatenet, Ultrafast Hydro-Micromechanical Synthesis of Calcium Zincate: Structural and Morphological Characterizations. J. Nanomater. (2017) Article ID 7369397; https://doi.org/10.1155/2017/7369397
[6] V. Caldeira, L. Jouffret, J. Thiel, F. R. Lacoste, S. Obbade, L. Dubau, M. Chatenet, Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries. J. Power Sources 350 (2017) 109-116; http://dx.doi.org/10.1016/j.jpowsour.2017.03.069
[2] F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Timely-activated 316L stainless steel: A low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments. Appl. Catal. B: Environmental 258 (2019); https://doi.org/10.1016/j.apcatb.2019.117963
[3] H. Schäfer, M. Chatenet, Steel, the Resurrection of a Forgotten Water-Splitting Catalyst. ACS Energy Lett. 3 (2018) 574-591; http://dx.doi.org/10.1021/acsenergylett.8b00024
[4] L. Ring, B. Pollet, M. Chatenet, S. Abbou, K. Küpper, M. Schmidt, M. Huck, A. Gries, M. Steinhart, H. Schäfer, From bad electrochemical practices to an environmental and waste reducing approach for the generation of active hydrogen evolving electrodes. Angewandte Chemie, Int. Ed. 59 (2019) 2-12; http://dx.doi.org/10.1002/anie.201908649
[5] V. Caldeira, L. Jouffret, J. Thiel, F. R. Lacoste, S. Obbade, L. Dubau, M. Chatenet, Ultrafast Hydro-Micromechanical Synthesis of Calcium Zincate: Structural and Morphological Characterizations. J. Nanomater. (2017) Article ID 7369397; https://doi.org/10.1155/2017/7369397
[6] V. Caldeira, L. Jouffret, J. Thiel, F. R. Lacoste, S. Obbade, L. Dubau, M. Chatenet, Controlling the shape change and dendritic growth in Zn negative electrodes for application in Zn/Ni batteries. J. Power Sources 350 (2017) 109-116; http://dx.doi.org/10.1016/j.jpowsour.2017.03.069